If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-0.05x-1196.61=0
a = 1; b = -0.05; c = -1196.61;
Δ = b2-4ac
Δ = -0.052-4·1·(-1196.61)
Δ = 4786.4425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-0.05)-\sqrt{4786.4425}}{2*1}=\frac{0.05-\sqrt{4786.4425}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-0.05)+\sqrt{4786.4425}}{2*1}=\frac{0.05+\sqrt{4786.4425}}{2} $
| 300.x=1276 | | 300xx=1276 | | 6-3x-(4x-9)=0 | | Y=2x+3=3x-4 | | X2-10x+16=0 | | 5|x|=45 | | 3x-1=8x+39 | | 300=150/x | | 3x*(x-1.2)=0 | | x.x.x+9x.x=18 | | (z+10)=(z-3) | | x.x.x+9x.x-18=0 | | X2-2x+2=0 | | s=3.14*5^2+3.14*5*12 | | -5u=36 | | 2/5=x/20=20/50 | | E=1+kE=1 | | E=1+kk=3 | | 3x-15=30x-60 | | E=1+kE=1k=3 | | 12x-80=40x+200 | | x3+4=0 | | Y=y-1y=7 | | 6=2–7y | | 4/7t-1/14t=t-19/2 | | 3n-5+2n-1=25 | | 12+8=x | | X^2-300x+200=0 | | 4^2x+1=8^4x | | 3x^2+24x+11=0 | | -67-x=6x-1 | | 3m-9=0 |